Math, asked by alwinsj777, 2 months ago

Sin 3A= Cos (A-26°) what is the value of A​

Answers

Answered by aman9422
1

Answer:

answer is in attachment

mark me brilliant

Attachments:
Answered by hemanji2007
3

Topic:-

Trigonometry

Question:-

Sin 3A= Cos (A-26°) what is the value of A

Solution:-

 Sin3A= Cos(A-26)

 We \:know\: that\: Sin 3A= Cos(90-3A)

 now\: we \:have\: to \:substitute \:there

 Cos(90-3A) = Cos(A-26)

 90-3A = A-26

 90+26 = A+3A

 116 = 4A

 A= \dfrac{116}{4}

 A= 29

Answer:-

A=29

More Information:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Multiples:-

 sin2\theta= 2sin\theta cos\theta

 sin2\theta=\dfrac{2tan\theta}{1+tan²\theta}

cos2\theta= cos²\theta-sin²\theta

cos2\theta= 1-2sin²\theta

cos2\theta= 2cos²\theta-1

cos2\theta= \dfrac{1-tan²\theta}{1+tan²\theta}

tan2\theta= \dfrac{2tan\theta}{1-tan²\theta}

cot2\theta= \dfrac{cot²\theta-1}{2cot\theta}

Similar questions