sin^3ø+cos^3ø÷sinø+cosø=
kushaldave2002:
Option
Answers
Answered by
14
Correction in question :
( sin³∅ + cos³∅ ) ÷ ( sin∅ + cos∅ ) = ?
Solution :
= ( sin³∅ + cos³∅ ) ÷ ( sin∅ + cos∅ )
Using algebric identity,
⇒ ( a³ + b³ ) = ( a + b ) ( a² + b² - ab )
= [ ( sin∅ + cos∅ ) ( sin²∅ + cos²∅ - sin∅ cos∅ ) ] ÷ ( sin∅ + cos∅ )
= ( sin²∅ + cos²∅ - sin∅ cos∅ )
Using Trigonometric identity,
⇒ ( sin²∅ + cos²∅ ) = 1
= ( 1 - sin∅ cos∅ )
The required answer is ( 1 - sin∅ cos∅ ).
( sin³∅ + cos³∅ ) ÷ ( sin∅ + cos∅ ) = ?
Solution :
= ( sin³∅ + cos³∅ ) ÷ ( sin∅ + cos∅ )
Using algebric identity,
⇒ ( a³ + b³ ) = ( a + b ) ( a² + b² - ab )
= [ ( sin∅ + cos∅ ) ( sin²∅ + cos²∅ - sin∅ cos∅ ) ] ÷ ( sin∅ + cos∅ )
= ( sin²∅ + cos²∅ - sin∅ cos∅ )
Using Trigonometric identity,
⇒ ( sin²∅ + cos²∅ ) = 1
= ( 1 - sin∅ cos∅ )
The required answer is ( 1 - sin∅ cos∅ ).
Attachments:
Answered by
3
Given :- Sin^3Ø + Cos^3Ø/SinØ+CosØ
Here we will apply algebraic identities :-
=> a^3 + b^3 = (a+b) (a^2 + b^2 - ab)
and Trigonometrical Identities :-
=> Sin^2Ø + Cos^2Ø = 1
= Sin^3Ø + Cos^3Ø/SinØ + CosØ
= (SinØ + CosØ) (Sin^2Ø + Cos^2Ø - SinØ.CosØ)/SinØ + CosØ
= (Sin^2Ø + Cos^2Ø - SinØ. CosØ)
= ( 1 - SinØ.CosØ)
Hence, Sin^3Ø + Cos^3Ø/SinØ+CosØ = 1- SinØ.CosØ
Similar questions