Sin 3x . Cos 5x = ??
Please give detailed explanation!
Answers
Answered by
6
____________________________________________________________
♦ Basic Trigonometry ♦
◘ Recall :
→ sin [ A + B ] = sin A cos B + sin B cos A
=> [ sin ( A + B ) - sin ( A - B ) ] = 2 sin B cos A
◘ Substitute :
→ A = 5x ; B = 3x
=> [ 2 sin 3x . cos 5x ] = [ sin ( 8x ) - sin ( 2x ) ]
=> ( sin 3x . cos 5x ) = ( 1/2 )[ sin ( 8x ) - sin ( 2x ) ]
= ( 0.5 sin( 8x ) - 0.5 sin( 2x ) )
_____________________________________________________________
→ Hence, ( sin 3x . cos 5x ) can be expressed as difference of sine functions as : [ 0.5 sin( 8x ) - 0.5 sin( 2x ) ]
_____________________________________________________________
♦ Hope this nelps
♦ Basic Trigonometry ♦
◘ Recall :
→ sin [ A + B ] = sin A cos B + sin B cos A
=> [ sin ( A + B ) - sin ( A - B ) ] = 2 sin B cos A
◘ Substitute :
→ A = 5x ; B = 3x
=> [ 2 sin 3x . cos 5x ] = [ sin ( 8x ) - sin ( 2x ) ]
=> ( sin 3x . cos 5x ) = ( 1/2 )[ sin ( 8x ) - sin ( 2x ) ]
= ( 0.5 sin( 8x ) - 0.5 sin( 2x ) )
_____________________________________________________________
→ Hence, ( sin 3x . cos 5x ) can be expressed as difference of sine functions as : [ 0.5 sin( 8x ) - 0.5 sin( 2x ) ]
_____________________________________________________________
♦ Hope this nelps
MakutoShiedo:
I failed in finding the mike XD
Similar questions