sin^3x + sin^3(120°+x) + sin^3(240°+x)
Answers
Answered by
1
Answer:
f(x)=sin
3
x+sin
3
(120+x)+sin
3
(240+x)
=
4
3sinx−sin3x+3sin(120+x)−sin(2π+3x)+3sin(240+x)−sin(4π+x)
[∵sin3x=3sinx−4sin
3
x]
=
4
3[sinx+sin(120+x)+sin(240+x)]−3sin3x
=
4
3
[[sinx+2sin(180+x)cos60
o
]−sin3x]
=
4
3
[[sinx−sinx]−sin3x]
=
4
3
[−sin3x]
f(x)=−
4
3
sin3x
∴ range of f(x)ϵ[−
4
3
,
4
3
]
So, P=3
Similar questions