sin 3x + sin 5x / cos 3x +cos 5x= π\16
Answers
Answered by
0
Answer:
1
Step-by-step explanation:
→ (sin 3x+sin 5x) /(cos 3x+cos 5x)
→ (sin 5x + sin 3x) /(cos 5x+cos 3x)
using :-
sin C + sin D = 2 * sin(C + D/2) * cos(C - D)/2 in numerator .
cos C + cos D = 2 * cos(C + D/2) * cos(C - D)/2 in denominator .
→ [2 * sin(5x + 3x/2) * cos(5x - 3x/2)] / [2 * cos(5x + 3x/2) * cos(5x - 3x/2)]
→ [2 * sin(8x/2) * cos(2x/2)] / [2 * cos(8x/2) * cos(2x/2)]
→ (2 * sin 4x * cos x) / (2 * cos 4x * cos x)
→ sin 4x / cos 4x
using :-
tan A = sin A / cos A
→ tan 4x
putting value of x now,
→ tan 4(π/16)
→ tan (π/4)
→ tan 45°
→ 1
Similar questions