Math, asked by EDITH007, 19 days ago

sin^4θ/a + cos^4θ/6 = 1/a+6
then find
sin^12θ/a^3 + cos^12θ/6^3​

Answers

Answered by vipinkumar212003
0

Answer:

\blue{\mathfrak{\underline{\large{Given}}}:}   \\ \frac{{ \sin}^{4}  \theta}{a}  +  \frac{{ \cos}^{4}  \theta}{6}  =  \frac{1}{a + 6}  \\ \\  \blue{\mathfrak{\underline{\large{To \: find}}}:} \\   \frac{{ \sin}^{12}  \theta}{ {a}^{3} }  +  \frac{{ \cos}^{12}  \theta}{ {6}^{3} }  \\ \\ \blue{\mathfrak{\underline{\large{Finding}}}:} \\ \frac{{ \sin}^{4}  \theta}{a}  +  \frac{{ \cos}^{4}  \theta}{6}  =  \frac{1}{a + 6}   \\ \blue{\mathfrak{\underline{\large{cube \: on \: both \:sides }}}:} \\  {( \frac{{ \sin}^{4}  \theta}{a}  +  \frac{{ \cos}^{4}  \theta}{6})}^{3}  =  {( \frac{1}{a + 6} )}^{3}  \\  \\  \frac{{ \sin}^{12}  \theta}{ {a}^{3} }  +  \frac{{ \cos}^{12}  \theta}{ {6}^{3} } + 3 \frac{{ \sin}^{8}  \theta}{ {a}^{2} }  \times \frac{{ \cos}^{4}  \theta}{ 6 } + 3 \frac{{ \sin}^{4}  \theta}{ a }  \times \frac{{ \cos}^{8}  \theta}{ {6}^{2} } =  \frac{1}{ {(a + 6)}^{3} }  \\  \\ \frac{{ \sin}^{12}  \theta}{ {a}^{3} }  +  \frac{{ \cos}^{12}  \theta}{ {6}^{3} }  + 3\frac{{ \sin}^{4}  \theta}{a} \times  \frac{{ \cos}^{4}  \theta}{6}(\frac{{ \sin}^{4}  \theta}{a}  +  \frac{{ \cos}^{4}  \theta}{6}) = \frac{1}{ {(a + 6)}^{3} }   \\  \\ \frac{{ \sin}^{12}  \theta}{ {a}^{3} }  +  \frac{{ \cos}^{12}  \theta}{ {6}^{3} }  + 3\frac{{ \sin}^{4}  \theta}{a} \times  \frac{{ \cos}^{4}  \theta}{6}( \frac{1}{a + 6} )  =\frac{1}{ {(a + 6)}^{3} }   \\  \\ \frac{{ \sin}^{12}  \theta}{ {a}^{3} }  +  \frac{{ \cos}^{12}  \theta}{ {6}^{3} }  = \frac{1}{ {(a + 6)}^{3} }   - \frac{{ \sin}^{4}  \theta{ \cos}^{4}  \theta}{2a(a + 6)} \\  \\ \red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Similar questions