(sin 4 A+cos 4 A)/(1−2sin 2 Acos 2 A) = ?
Answers
Answered by
1
Answer:
To Prove: sin⁴A + cos⁴A = 1 - 2sin²A × cos²A
Solution: sin⁴A + cos⁴A can be expressed as;
α² + β² = (α + β)² - 2αβ
(sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2(sin²A)(cos²A)
\boxed{\sf sin^{2}\theta + cos^{2}\theta = 1}sin2θ+cos2θ=1
(sin²A)² + (cos²A)² = (1)² - 2(sin²A)(cos²A)
(sin²A)² + (cos²A)² = 1 - 2 × sin²A × cos²A
Hence Proved.
Identities used in the Solution:
α² + β² = (α + β)² - 2αβ
sin²θ + cos²θ = 1
Similar questions
Math,
4 hours ago
English,
4 hours ago
English,
4 hours ago
Computer Science,
8 hours ago
Science,
8 hours ago
World Languages,
8 months ago
Math,
8 months ago