Math, asked by anshulchoudharybtp, 9 months ago

Sin^4 theeta - tan^4 theeta = sec^2 theeta + tan^ theeta ( PROVE THIS)

Answers

Answered by Mora22
2

Answer:

</p><p></p><p> { \sec^{4}  θ } - tan^4 θ  = sec^2θ   + tan^2θ

proof..

lhs = Sec^4θ - tan^4 θ

 = ( { \sec}^{2} θ +  { \tan}^{2} θ)( { \sec}^{2} θ -  { \tan}^{2} θ)

 = ( { \sec }^{2} θ +  { \tan }^{2} θ)

hence \: proved.

Answered by BrainlyVanquisher
4

Given : -

  • 2sinϴ - 1 = 0

To prove : -

  • secϴ + tanϴ = √3

Proof :-

We have ,

  • => 2sinϴ - 1 = 0
  • => 2sinϴ = 1
  • => sinϴ = 1/2
  • => sinϴ = sin30°
  • => ϴ = 30°

Now ,

  • => secϴ + tanϴ = sec30° + tan30°
  • => secϴ + tanϴ = 2/√3 + 1/√3
  • => secϴ + tanϴ = (2 + 1)/√3
  • => secϴ + tanϴ = 3/√3
  • => secϴ + tanϴ = √3

Hence proved !

Similar questions