Math, asked by ninadrai, 1 year ago

sin ( π÷4 + theta) =?

Answers

Answered by mysticd
16

Answer:

The \: value \: of \: \red{ Sin\left(\frac{\pi}{4} + \theta\right)} = \green {  \frac{1}{\sqrt{2}}(cos\theta+sin\theta)}

Step-by-step explanation:

The \: value \: of \: \red{ Sin\left(\frac{\pi}{4} + \theta\right)}

 = sin\frac{\pi}{4} cos \theta +cos\frac{\pi}{4} sin \theta

 \boxed { \pink { sin(A+B)=sinAcosB+cosAsinB}}

= \frac{1}{\sqrt{2}}\times cos\theta +  \frac{1}{\sqrt{2}}\times sin\theta

 \boxed { \pink { sin\frac{\pi}{4} = cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}}}

 = \frac{1}{\sqrt{2}}(cos\theta+sin\theta)

Therefore.,

The \: value \: of \: \red{ Sin\left(\frac{\pi}{4} + \theta\right)} = \green {  \frac{1}{\sqrt{2}}(cos\theta+sin\theta)}

•••♪

Similar questions