sin^4 theta - cos^4 theta = 1 - 2 cos^2 theta
Answers
EXPLANATION.
⇒ sin⁴θ - cos⁴θ = 1 - 2cos²θ.
As we know that,
We can write equation as,
⇒ (sin²θ)² - (cos²θ)².
As we know that,
Formula of :
⇒ (a² - b²) = (a + b)(a - b).
⇒ [sin²θ + cos²θ][sin²θ - cos²θ].
⇒ 1[sin²θ - cos²θ].
As we know that,
Formula of :
⇒ sin²θ + cos²θ = 1.
⇒ sin²θ = 1 - cos²θ.
⇒ [1 - cos²θ - cos²θ].
⇒ [1 - 2cos²θ].
Hence proved.
MORE INFORMATION.
Inverse trigonometric ratios of multiple angles.
(1) = 2sin⁻¹x = sin⁻¹(2x√1 - x²), if -1 ≤ x ≤ 1.
(2) = 2cos⁻¹x = cos⁻¹(2x² - 1), if -1 ≤ x ≤ 1.
(3) = 2tan⁻¹x = tan⁻¹(2x/1 - x²) = sin⁻¹(2x/1 + x²) = cos⁻¹(1 - x²/1 + x²) = 2tan⁻¹x (|x| < 1) = π - 2tan⁻¹x,(|x| > 1).
(4) = 3sin⁻¹x = sin⁻¹(3x - 4x³).
(5) = 3cos⁻¹x = cos⁻¹(4x³ - 3x).
(6) = 3tan⁻¹x = tan⁻¹(3x - x³/1 - 3x²).
⇒ sin⁴θ - cos⁴θ = 1 - 2cos²θ.
As we know that,
We can write equation as,
⇒ (sin²θ)² - (cos²θ)².
As we know that,
Formula of :
⇒ (a² - b²) = (a + b)(a - b).
⇒ [sin²θ + cos²θ][sin²θ - cos²θ].
⇒ 1[sin²θ - cos²θ].
As we know that,
Formula of :
⇒ sin²θ + cos²θ = 1.
⇒ sin²θ = 1 - cos²θ.
⇒ [1 - cos²θ - cos²θ].
⇒ [1 - 2cos²θ].
Hence proved.
_______________________________________________________________