sin^4 theta- cos^4 theta =1-2cos^2 theta
Answers
Answered by
6
(sin⁴A)-(cos⁴A) = 1-2cos²A
LHS => (sin²A)²-(cos²A)²
=> a²-b² = (a+b)(a-b)
=> (sin²A+cos²A)(sin²A-cos²A)
=> as , sin²A+cos²A = 1
=> 1(sin²A-cos²A)
=> sin²A-cos²A
=> adding and subtracting cos²A
=> sin²A-cos²A-cos²A+cos²A
=> (sin²A+cos²A)-2cos²A
=> 1-2cos²A
RHS = 1-2cos²A
since , LHS = RHS
proved ....
hope this helps
LHS => (sin²A)²-(cos²A)²
=> a²-b² = (a+b)(a-b)
=> (sin²A+cos²A)(sin²A-cos²A)
=> as , sin²A+cos²A = 1
=> 1(sin²A-cos²A)
=> sin²A-cos²A
=> adding and subtracting cos²A
=> sin²A-cos²A-cos²A+cos²A
=> (sin²A+cos²A)-2cos²A
=> 1-2cos²A
RHS = 1-2cos²A
since , LHS = RHS
proved ....
hope this helps
Similar questions
English,
8 months ago
Chemistry,
8 months ago
Biology,
1 year ago
Environmental Sciences,
1 year ago