Math, asked by ggguitarg31, 1 year ago

sin^4(x)+cos^4(x)=7sin(x)cos(x)/2

Answers

Answered by karthik4297
1
[tex] sin^{4} x+ cos^{4} x = 7 \frac{7sinx.cosx}{2} [/tex]
 ( cos^{2} x+ sin^{2}x )^{2} -  ( cos^{2} x- sin^{2} x)^{2} = 7sinx.cosx
 1^{2} + cos^{2} 2x =  \frac{7}{2} ×2sinx.cosx
1+ cos^{2} 2x \frac{7}{2} sin2x.
2- sin^{2} 2x =  \frac{7}{2} sin2x.
2 sin^{2} 2x+7sin2x-4 = 0
after solving this equation,we get,_
sin2x = [tex] \frac{1}{4}  and sin2x = -2

karthik4297: sorry bro electricity went
karthik4297: in 2nd step sin^4x+cos^4x=(7sinx.cosx)/2,bt i done a mistake i wrote one extra 7
karthik4297: ans is sin2x=1/4 or sin2x=-2
karthik4297: we know that min value of sin2x is -1 so sin2x = -2 is not possible
ggguitarg31: how ( cos^{2} x+ sin^{2}x )^{2} - ( cos^{2} x- sin^{2} x)^{2} = 7sinx.cosx
karthik4297: we have sin^4x+cos^4x=(7/2)sinx.cosx
karthik4297: we can write ,2(sin^4x+cos^4x)=(cos^{2}x+sin^{2}x)^2 + (cos^{2}x-sin^{2}x)^2 .bt sorry i wrote (cos^{2}x+sin^{2}x)^2 - (cos^{2}x-sin{2}x)^2 bt next step is right,
ggguitarg31: ok
ggguitarg31: thanks
ggguitarg31: fine
Similar questions