Math, asked by Anonymous, 1 year ago



Sin(π/4+x)sin(π/4-x)=1/2cos2x


❌❌❌No spam ❌❌❌

✏✏✏Ans these que fast plz I need it

Answers

Answered by Anonymous
23

Answer:

L.H.S. = R.H.S.

Step-by-step explanation:

Given :

\large \text{$sin(\dfrac{\pi}{4}+x) \ sin(\dfrac{\pi}{4}-x)=\dfrac{1}{2} \ cos \ 2x $}

\large \text{$L.H.S.=sin(\dfrac{\pi}{4}+x) \ sin(\dfrac{\pi}{4}-x)$}\\\\\\\large \text{$L.H.S.=sin(x+\dfrac{\pi}{4}) \ sin(-x+\dfrac{\pi}{4})$}\\\\\\\large \text{Using formula $sin(a+\dfrac{b}{2})sin(a+\dfrac{b}{2})=-\dfrac{1}{2}(cos \ a-cos \ b)$}\\\\\\\large \text{$L.H.S.=-\dfrac{1}{2}(cos \ \dfrac{2\pi}{4} -cos \ 2x)$}\\\\\\\large \text{we know that $cos \ \dfrac{\pi}{2}=0$}

\large \text{$L.H.S.=-\dfrac{1}{2}(0-cos \ 2x)$}\\\\\\\large \text{$L.H.S.=-\dfrac{1}{2}(-cos \ 2x)$}\\\\\\\large \text{$L.H.S.=\dfrac{1}{2}(cos \ 2x)$}

L.H.S. = R.H.S.

Hence proved.

Thus we get answer.

Answered by Anonymous
1

Step-by-step explanation:

Sin(π/4+x)sin(π/4-x)

=1/2(2Sin(π/4+x)sin(π/4-x))

=1/2*[cos(π/4-x-π/4-x)/2+cos(π/4-x+π/4+x)

=1/2 [cos(-2x)+cos(π/4+π/4)]

=1/2 [cos2x+0]

=1/2 cos2x

Similar questions