Math, asked by netalkarsaiesh, 1 year ago

sin 40+sin 20-cos 10 =0

Answers

Answered by Swarup1998
10

To prove: \mathsf{sin40^{\circ}+sin20^{\circ}-cos10^{\circ}=0}

Rules to know:

  • \mathsf{sinC+sinD=2\:sin\dfrac{C+D}{2}\:cos\dfrac{C-D}{2}}

  • \mathsf{sinC-sinD=2\:cos\dfrac{C+D}{2}\:sin\dfrac{C-D}{2}}

  • \mathsf{cosC+cosD=2\:cos\dfrac{C+D}{2}\:cos\dfrac{C-D}{2}}

  • \mathsf{cosC-cosD=2\:sin\dfrac{C+D}{2}\:sin\dfrac{D-C}{2}}

  • \mathsf{sin30^{\circ}=\dfrac{1}{2}}

Proof:

Left Hand Side = \bold{sin40^{\circ}+sin20^{\circ}-cos10^{\circ}}

= \mathsf{(sin40^{\circ}+sin20^{\circ})-cos10^{\circ}}

= \mathsf{2\:\sin\dfrac{40^{\circ}+20^{\circ}}{2}\:cos\dfrac{40^{\circ}-20^{\circ}}{2}-cos10^{\circ}}

= \mathsf{2\:sin\dfrac{60^{\circ}}{2}\:cos\dfrac{20^{\circ}}{2}-cos10^{\circ}}

= \mathsf{2\:sin30^{\circ}\:cos10^{\circ}-cos10^{\circ}}

= \mathsf{2\times\dfrac{1}{2}\:cos10^{\circ}-cos10^{\circ}}

= \mathsf{cos10^{\circ}-cos10^{\circ}}

= \bold{0} = Right Hand Side

\boxed{\mathsf{sin40^{\circ}+sin20^{\circ}-cos10^{\circ}=0}}

Thus proved.

Similar questions