sin 40° + sin 75° = cos 15 ° + cos 50°
Answers
Answered by
22
sin 40* + sin (90*-15*) = cos 15* + cos (90*-40*)
sin 40* + cos 15* = cos 15* + sin 40*
L.H.S = R.H.S Proved
sin 40* + cos 15* = cos 15* + sin 40*
L.H.S = R.H.S Proved
Ajeetkumar26659452:
sorry your answer is shory please answer is long type
Answered by
1
It is proven that sin 40° + sin 75° = cos 50° + cos 15°
Given:
sin 40° + sin 75° = cos 15 ° + cos 50°
To find:
Prove that sin 40° + sin 75° = cos 15 ° + cos 50°
Solution:
Given statement sin 40° + sin 75° = cos 15 ° + cos 50°
Take LHS
sin 40° + sin 75°
As we know
sin (90°- θ) = cos θ and cos (90°- θ) = sin θ
From above formulas
sin 40° = sin(90-50) = cos 50°
=> sin 40° = cos 50°
sin 75° = sin(90-15) = cos 15°
=> sin 75° = cos 15°
From above calculations
sin 40° + sin 75° = cos 50° + cos 15° = RHS
Therefore,
It is proven that sin 40° + sin 75° = cos 50° + cos 15°
#SPJ2
Similar questions