sin(40°25')cos(19°35')+cos(40°25')sin(19°35')
Answers
Answer:
√3/2
Step-by-step explanation:
sin(A+B)=sinAcosB+cosAsinB
here A=40°25' and B= 19°35.
substitute in above equation we get
sin(40°25')cos(19°35')+cos(40°25')sin(19°35)=sin(40°25'+19°35')
=sin(59°60')
but 60'=1°
so sin(59°60')= sin(60)=√3/2
Answer: √3 / 2
Concept : Trigonometric Identities
Given : sin(40°25')cos(19°35') + cos(40°25')sin(19°35')
To Find : Value of the given identity
Step-by-step explanation:
We know that, according to the identity :
⇒ sinAcosB + cosAsinB = sin(A + B) ...(i)
Let A=40°25' and B= 19°35.
Putting values in equation (i) :
= sin(40°25')cos(19°35')+cos(40°25')sin(19°35)
= sin(40°25'+19°35')
= sin(59°60')
We know that, 60'=1°
⇒ sin(59°60')= sin(60°)
∴ Value of sin(60°) =
#SPJ2