sin(45+A) cos(45-B)+cos(45+A) sin(45-B)= cos (A-B) prove that
Answers
Answered by
3
L.H.S
sin(45°+A).cos(45°-B)+cos(45°+A).sin(45°-B),
sin[(45°+A)+(45°-B)],
sin[90°+(A-B)],
cos(A-B),
hence
L.H.S=R.H.S,
since
sinP.cosQ+cosP.sinQ=sin(P+Q),
sin(90°-P)=cosP
sin(45°+A).cos(45°-B)+cos(45°+A).sin(45°-B),
sin[(45°+A)+(45°-B)],
sin[90°+(A-B)],
cos(A-B),
hence
L.H.S=R.H.S,
since
sinP.cosQ+cosP.sinQ=sin(P+Q),
sin(90°-P)=cosP
Similar questions