Math, asked by bobbi, 1 year ago

sin 45 degrees + cos 45 degrees

Answers

Answered by aryan014
91
Hii frnd.

Sin 45=1/root 2
Cos 45=1/root 2
1/root2+1/root2=2/root 2
On multiplying root 2 on both numerator and denominator
root 2 will be the answer.

Hope it helped u.
Answered by pinquancaro
52

Answer:

\sin(45^\circ)+\cos(45^\circ)=\sqrt2    

Step-by-step explanation:

To find : Solve expression \sin(45^\circ)+\cos(45^\circ) ?

Solution :

We know the trigonometry function values from trigonometry ratio table,

\sin(45^\circ)=\frac{\sqrt2}{2}

\cos(45^\circ)=\frac{\sqrt2}{2}

Substitute the values in the expression, \sin(45^\circ)+\cos(45^\circ)

\sin(45^\circ)+\cos(45^\circ)=\frac{\sqrt2}{2}+\frac{\sqrt2}{2}

\sin(45^\circ)+\cos(45^\circ)=\frac{\sqrt2+\sqrt2}{2}

\sin(45^\circ)+\cos(45^\circ)=\frac{2\sqrt2}{2}

\sin(45^\circ)+\cos(45^\circ)=\sqrt2

Therefore, \sin(45^\circ)+\cos(45^\circ)=\sqrt2

Similar questions