sin(45+x)+sin(45-x) equals to?
Answers
Answer:
Step-by-step explanation:
sin (45+x) + sin(45-x)
(a+b) (a-b)
Step-by-step explanation:
Given:-
Sin (45+x) + Sin (45-x)
To find :-
Find the value of the expression ?
Solution :-
Given expression is Sin (45+x) + Sin (45-x)
We know that
Sin (A+B) = Sin A Cos B + Cos A Sin B
Sin (45+x) = Sin 45° Cos x + Cos 45° Sin x
=> Sin (45+x) = (1/√2)Cosx + (1/√2) Sin x
=> Sin (45+x) = (Cos x)/√2 + (Sin x)/√2
=> Sin (45+x) = (Cos x + Sin x)/√2
=> Sin (45+x) = (Sin x+ Cosx)/√2
and
Sin (A -B) = Sin A Cos B - Cos A Sin B
Sin (45-x) = Sin 45° Cos x - Cos 45° Sin x
=> Sin (45-x) = (1/√2)Cosx - (1/√2) Sin x
=> Sin (45-x) = (Cos x)/√2 - (Sin x)/√2
=> Sin (45-x) = (Cos x - Sin x)/√2
=> Sin (45-x) = (Sin x - Cosx)/√2
On applying this formula to the given expression then
=> Sin (45+x) + Sin (45-x)
=> (Sin x+ Cosx)/√2 + (Sin x - Cosx)/√2
=> [( (Sin x + Cosx)+ (Sin x - Cosx)]/√2
=> ( Sin x + Cos x + Sin x - Cos x)/√2
=> (Sin x + Sin x)/√2
=> (2 Sin x )/√2
=> (√2×√2× Sin x)/√2
=> √2 Sin x
Answer :-
The value of Sin (45+x)+Sin (45-x) = √2 Sin x
Used formulae:-
→ Sin (A+B) = Sin A Cos B + Cos A Sin B
→Sin (A -B) = Sin A Cos B - Cos A Sin B
→ Sin 45° = 1/√2
→ Cos 45° = 1/√2