sin (45° + θ) – cos (45° – θ) is equal to
2 cos θ
0
2 sin θ
1
Answers
Answered by
64
Question :
Find the value of:
sin(45° + θ) – cos (45°-θ)
Formula's used :
Solution :
We have ,
sin(45° + θ) – cos (45°-θ)
Use formula of sin(a+b) and cos(a-b) ,then
sin(45° + θ) – cos (45°-θ)
=sin45°cosθ+sinθcos45°-(cosθcos45°-sinθsin45°)
=sin45°cosθ+sinθcos45°-cosθcos45°+sinθsin45°
We know that cos45°=sin45°
=sin45°cosθ+sinθcos45°-cosθsin45°+sinθcos45°
=0
Therefore,sin(45° + θ) – cos (45°-θ)=0
Another way to solve :
We know that sin(90-x)=cosx and cos(90-x)=sinx
Then,
sin(45° + θ) – cos (45°-θ)
=sin(45° + θ) – sin[90-(45°-θ)]
=sin(45° + θ) – sin(45°+θ)
=0
Answered by
5
Answer:
★
sin (45 + theta) - Cos (45 - theta)
=sin(45 + O) – cos(45 – O)
=sin(45 + O) – sin{90- (45 – O)} (since, cosO =sin (90 – O))
= sin(45 + O) – sin{45 + O}
=0
Similar questions