Math, asked by HritabrataBose, 1 month ago

Sin 45°×Cos 65°+Sin 135°×Cos115° = ?

Answers

Answered by kimtaehyung21
5

Answer:

sin45° ×cos(90°-45°) + sin(180°-45°) ×cos(90°+45° )

sin45° ×sin45° + cos45° × sin45° ×(-sin45° )

sin²45° - cos²45°

(1/√2)² - (1/√2)²

1/2 - 1/2

1 - 1/2 = 0/2 = 0

Step-by-step explanation:

hope it will help you

Answered by Anonymous
66

\huge\purple{ANSWER:-}

\huge\red{G}\pink{i}\orange{v}\green{e}\blue{n:-}

\small\red {=> sin45°cos65° + sin135°cos115°=0}

\small\pink{L.H.S.    \:  \:  sin45°cos65° + sin135°cos115°}

\small\orange{We  \: know \:  that}

\small\green{ sin (130°-θ)= sinθ  ;  </p><p>//cos(180 °- θ)=  - cosθ  }

\small\blue{Now: sin45°cos65° + </p><p> sin(180° - 45°) cos (180°-65°)}

=&gt; sin45°.cos65°  +sin45°(-cos65°)

\small\red{=&gt; sin45° cos65° - sin45° cos65°}

\small\purple{ =  &gt; 0 = R.H.S.}

\small \pink{---Hence Proved---}

\huge\red{@MNF}

Similar questions