Math, asked by shrishtikatar322, 11 months ago

sin 45sin 30 cos 45 cos 30

Answers

Answered by charliejaguars2002
3

Answer:

\large\boxed{\frac{\sqrt{3} }{8}=0.21650 }

Step-by-step explanation:

To solve this problem, first you have to trivial identify of sin and cos.

Given:

sin(45°) sin(30°) cos(45°) cos(30°)

Solutions:

First, you have to trivial identify of sin.

\displaystyle \sin(45)^{\circ}=\frac{\sqrt{2} }{2}

\displaystyle \sin(30)^{\circ}=\frac{1}{2}

Next, trivial identify of cos.

\displaystyle \cos(45)^{\circ}=\frac{\sqrt{2} }{2}

\displaystyle cos(30)^{\circ}=\frac{\sqrt{3} }{2}

Then, multiply fractions from left to right.

\displaystyle \frac{\sqrt{2}  }{2}*\frac{1}{2}*\frac{\sqrt{2} }{2}*\frac{\sqrt{3} }{2}

\large\boxed{\textnormal{Radical Rule}}

\displaystyle \sqrt{b} \sqrt{b}=b

\displaystyle \sqrt{2}  \sqrt{2}=2*1=2

Multiply numbers from left to right.

\displaystyle 1*2=2

\displaystyle 2\sqrt{3}

Rewrite the problem down.

\displaystyle \frac{2\sqrt{3} }{2*2*2*2}

Multiply.

\displaystyle 4^2=16, 2*2*2*2=16

\displaystyle \frac{2\sqrt{3} }{16}

Common factor of 2.

Make sure to divide numbers from left to right.

\displaystyle 16\div2=8

\large\boxed{\frac{\sqrt{3} }{8} }

As a result, the final answer is √3/8=0.21650.

Similar questions