Math, asked by Assij, 11 months ago


(sin 47/cos 43°)square
(cos 30°/cot 30°)square - (sin 60°)square ​

Answers

Answered by mehakshahul
13

Answer:

Step-by-step explanation:-

Cos 43° = sin (90°-43°)=sin 47°

Now

(1)^2 + ( cos 30° × sin 30°/ cos 30° )^3 - (root 3/2)^2

1 + sin 30°^2 - 3/4

1+ 1/4 -3/4

(4+1-3)÷4

=1/2

Answered by lublana
16

(\frac{sin47^{\circ}}{cos43^{\circ}})^2+(\frac{cos30^{\circ}}{cot30^{\circ}})^2-sin^260^{\circ}=\frac{1}{2}

Step-by-step explanation:

Given:

(\frac{sin47^{\circ}}{cos43^{\circ}})^2+(\frac{cos30^{\circ}}{cot30^{\circ}})^2-sin^260^{\circ}

(\frac{sin47^{\circ}}{cos(90-47)^{\circ}})^2+(\frac{cos30^{\circ}}{cot30^{\circ}})^2-sin^260^{\circ}

We know that

cos(90-\theta)=sin\theta

cos30^{\circ}=\frac{\sqrt 3}{2}

cot30^{\circ}=\sqrt 3

sin60^{\circ}=\frac{\sqrt 3}{2}

Substitute the values

(\frac{sin43}{sin43})^2+(\frac{\sqrt 3}{2\times \sqrt 3})^2-(\frac{\sqrt 3}{2})^2

1+\frac{1}{4}-\frac{3}{4}

1+\frac{1-3}{4}

\frac{4-2}{4}=\frac{2}{4}

=\frac{1}{2}

#Learn more:

https://brainly.in/question/2427258:Answered by Dhanvir

Similar questions