sin 480⁰ cos 690⁰+cos 780⁰ sin1050⁰
Answers
Answered by
2
Answer:
sin 480° (cos 690°) + cos 780° sin1050°
First solving first part then second and then adding both of them
sin 480° (cos 690°)
- sin(2π - x) = -sinx
- and cos (2π -x) = cos x
- using 4π
- cos (4π - x) = cos x
So
sin ( 360 - 480) cos ( 720-690)
- sin( -120) cos(30)
- sin(-x) = -sin x and sin (π/2 + x) = cos x
sin120° cos 30
sin ( π/2 +30) cos (30)
cos(30) cos(30)
cos²(30)
Now
cos 780⁰ sin1050⁰
Using
- Using sin (2π - x) = -sin (x)
- Using sin (2π - x) = -sin (x) so sin ( 6π - x) = - sin x
- Using sin (2π - x) = -sin (x) so sin ( 6π - x) = - sin xcos (2π - x) = cos x
Now
cos 780 sin 1050
cos ( 720 -780) sin (6(180) - 1050)
cos ( 720 - 780) sin(1080 - 1050)
cos (-60) [-sin (30)]
- Using cos(-x) = cos x
-cos(60) sin(30)
Now
adding them
cos²(30) - cos(60) sin(30)
- cos 30 = √3/2
- sin 30 = 1/2
- cos 60 = 1/2
=(√3/2)² - (1/2)(1/2)
= 3/4-1/4
= 2/4
= 1/2
Similar questions