Math, asked by khatiwadakripesh1, 4 months ago

sin^4a= 1/8(3-4cos2a+cos4a)​

Answers

Answered by aryan073
7

Given :

 \\  \red \bigstar \large \rm \:  {sin}^{4} a =  \frac{1}{8(3 - 4cos2a + cos4a)}

To prove :

LHS=RHS:

  \\ \red \bigstar \large \rm \:  {sin}^{4}a =  \frac{1}{8(3 - 4cos2a + cos4a)}

Solution :

LHS:

 \\  \implies \large \sf \:  {sin}^{4} a =    \bigg({ { \frac{2}{2} sin}^{2}a } \bigg)^{2}  \\  \\  \\  \implies \large \sf \:  \frac{1}{4} \bigg(  {(1 - cos2x)}^{2}  \bigg)\\  \\   \\  \implies \large \sf \:  \frac{1}{4} \bigg(1 - 2cos2x +  {cos}^{2}  2x \bigg) \\  \\  \\  \implies \large \sf \:  \frac{2}{4 \times 2}  \bigg(1 - 2cos2x +  {cos}^{2} 2x \bigg) \\  \\  \\  \implies \large \sf \:   \frac{ \cancel2}{4 \times  \cancel2}  \bigg(1 - 2cos2x +  {cos}^{2} 2x \bigg) \\  \\  \\  \implies \large \sf \:   \frac{1}{4}  \bigg(1 - 2cos2x +  {cos}^{2} 2x \bigg) \\  \\  \\  \implies \large \sf \:  \frac{1}{8}  \bigg(2 - 4cos2x + 2 {cos}^{2} 2x \bigg) \\  \\  \\  \implies \large \sf \:  \frac{1}{8}  \bigg(2 - 4cos2x + 1 + cos4x \bigg) \\  \\  \\  \implies \large \sf \:  \frac{1}{8}  \bigg(3 - 4cos2x + cos4x \bigg)  \\  \\  \\  \implies \boxed{ \large \sf{ \therefore \:  \frac{1}{8}  \bigg(3 - 4cos2x + cos4x \bigg)}}

LHS=RHS

hence proved..

Additional information :

 \large\bf \: (1) \:  {sin}^{2} x +  {cos}^{2} x = 1 \\  \\  \large\bf(2)1 +  {tan}^{2} x =  {sec}^{2} x \\  \\ \large \bf \: (3)1 +  {cot}^{2} x =  {cosec}^{2} x \\  \\ \large\bf (4) \: 1  -  cos2x = 2 {sin}^{2}x \\  \\  \large\bf \: (5)1 + cos2x = 2 {sin}^{2} x \\  \\  \large\bf \: (6)1 -  sin2x = ( {cosx - sinx})^{2}  \\  \\ \large \bf \: (7)1 + sin2x =  ({cosx + sinx})^{2}  \\  \\ \large \bf \: (8) \: cos2x =  {cos}^{2} x -  {sin}^{2} x

Similar questions