sin 4a - 2B + sin 4a minus 2 a upon cos square A minus 2 b + cos square B minus 2 a is equal to tan a + b
Answers
Answered by
3
Answer:
Sin(4a-2b)+sin(4b-2a)/cos(4a-2b)+cos(4b-2a) = Tan(a + b)
Step-by-step explanation:
Correct Question is
Sin(4a-2b)+sin(4b-2a)/cos(4a-2b)+cos(4b-2a) = Tan(a + b)
LHS Numerator = Sin(4a-2b)+sin(4b-2a)
Sinx + Siny = 2 Sin((x+y)/2)Cos((x-y)/2)
= 2 Sin((4a - 2b + 4b - 2a)/2) Cos((4a - 2b - 4b + 2a)/2)
= 2 Sin(a+b)Cos(3(a-b))
LHS Denominator = cos(4a-2b)+cos(4b-2a)
Cosx +Cosy = 2 Cos((x+y)/2)Cos((x-y)/2)
= 2 Cos((4a - 2b + 4b - 2a)/2) Cos((4a - 2b - 4b + 2a)/2)
= 2 Cos(a+b)Cos(3(a-b))
Numerator/Denominator
LHS = 2 Sin(a+b)Cos(3(a-b)) / 2 Cos(a+b)Cos(3(a-b))
Cancelling 2 & Cos(3(a-b))
= Sin(a+b)/Cos(a+b)
= Tan(a + b)
= RHS
QED
Proved
Sin(4a-2b)+sin(4b-2a)/cos(4a-2b)+cos(4b-2a) = Tan(a + b)
Similar questions