Sin^4x+cos^4. =1
______________
1-2sin^2x×cos^2x
Answers
Answered by
3
to prove:-
sin⁴x+cos⁴x
__________ =1
1 - 2 sin²xcos²x
proof:-
L.H.S
(sin²x)²+(cos²x)² _____________
1-2sin²xcos²x
(sin²x+cos²x)²-2sin²xcos²x
_____________________ [∵a²+b²=(a+b)²-2ab]
1-2sin²xcos²x
1-2sin²xcos²x
___________ [∵sin²x+cos²x=1]
1-2sin²xcos²x
=1
∴L.H.S=R.H.S[∴Proved]
sin⁴x+cos⁴x
__________ =1
1 - 2 sin²xcos²x
proof:-
L.H.S
(sin²x)²+(cos²x)² _____________
1-2sin²xcos²x
(sin²x+cos²x)²-2sin²xcos²x
_____________________ [∵a²+b²=(a+b)²-2ab]
1-2sin²xcos²x
1-2sin²xcos²x
___________ [∵sin²x+cos²x=1]
1-2sin²xcos²x
=1
∴L.H.S=R.H.S[∴Proved]
Similar questions
Economy,
7 months ago
History,
7 months ago
Math,
7 months ago
World Languages,
1 year ago
Math,
1 year ago