Math, asked by debmalyachakraborty4, 29 days ago

Sin^4x+cos^4x=1-1÷2sin^2x​

Answers

Answered by TheGodWishperer
4

Sin⁴x+cos⁴x

→ (sin²x)²+(cos²)²

→ (sin²x)²+(cos²)² +2sin²xcos²x - 2sin²xcos²x

→ (sin²x+cos²)²-2sin²xcos²

→ 1-2sin²xcos²x

→1-4sin²xcos²x/2

→1-sin²2x/2

LHS=RHS

Answered by Xxpagalbaccha2xX
3

Answer:

f(x)=sin²x+(1−sin²x)²

=1+sin²x−2sin²x+sin⁴x

=1−sin²x(1−sin²x)

=1−sin²xcos²x

 = 1 - ( \frac{sin²x}{2} )²

sin²x∈[−1,1] 

⇒sin²2x∈[0,1] 

⇒( \frac{sin2 x}{2} )² \: ∈ \: [0   \frac{1}{4} ]

0 \:  \leqslant [  \frac{ \sin2x}{2} ]² \leqslant  \frac{1}{4} </u></strong></p><p><strong><u>[tex]0 \:  \leqslant [  \frac{ \sin2x}{2} ]² \leqslant  \frac{1}{4}

⇒0≥−[  \frac{ \sin2x }{2}  ]²≥− \frac{1}{4} </u></strong></p><p><strong><u>[tex]⇒0≥−[  \frac{ \sin2x }{2}  ]²≥− \frac{1}{4}

⇒1≥1−[ \frac{ \sin2x }{2} ]²≥1− \frac{1}{4} </u></strong></p><p><strong><u>[tex]⇒1≥1−[ \frac{ \sin2x }{2} ]²≥1− \frac{1}{4}

⇒1≥f(x) \geqslant  \frac{3}{4} </u></strong></p><p><strong><u>[tex]⇒1≥f(x) \geqslant  \frac{3}{4}

⇒f(x) lies \:  in [ \frac{4}{1} 3]

Similar questions