Sin 50 +sin 40 =
Answers
Answered by
0
Answer:
LHS =sin40∘cos50∘+cos40∘sin50∘
=sin40∘cos(90∘−40∘)+cos40∘sin(90∘−40∘)
=sin40∘+sin40∘+cos40∘cos40∘
=sin240∘+cos240∘=1=RHS. Hence proved
ii) LHS =cot(270∘−θ)cot(270∘+θ)cot(540∘−θ)
=tanθ(−tanθ).cot(360∘+(180∘−θ).cot(360∘+(180∘+θ))
−tan2θ.cot(180∘−θ).cot(180∘+θ)
−tan2θ(−cotθ)(cotθ)
−1cot2θ(−cot2θ)
=1=RHS Hence Proved.
iii) LHS=cosπ8+cos(3π)8+cos(5π)8+cos(7π)8
=cosπ8+cos(3π)8+cos(π−3π8)+cos(π−π8)
=cosπ8+cos(3π)8−cos(3π)8−cosπ8
=0 = RHS Hence proved
hope its helpful pls vote:D
and ALL THE BEST!
Explanation:
Similar questions