Math, asked by sauravnayak1, 1 year ago

Sin 50-sin 70+sin10=o
Proved the question ​

Answers

Answered by vasantinikam2004
2

\huge\bold\red{ANSWER:-}

We will use these two trignometric formulas to solve this.

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]</em></strong></p><p></p><p><strong><em>We will use these two trignometric formulas to solve this.[tex]1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:</em></strong></p><p></p><p><strong><em>We will use these two trignometric formulas to solve this.[tex]1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:[tex]Sin(60)Cos(10) - Cos(60)Sin(10) -{Sin(60)Cos(10) + Cos(60)Sin(10)} + Sin(10)

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:[tex]Sin(60)Cos(10) - Cos(60)Sin(10) -{Sin(60)Cos(10) + Cos(60)Sin(10)} + Sin(10)On simplifying we get:

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:[tex]Sin(60)Cos(10) - Cos(60)Sin(10) -{Sin(60)Cos(10) + Cos(60)Sin(10)} + Sin(10)On simplifying we get:-2*Cos(60)Sin(10) + Sin(10)

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:[tex]Sin(60)Cos(10) - Cos(60)Sin(10) -{Sin(60)Cos(10) + Cos(60)Sin(10)} + Sin(10)On simplifying we get:-2*Cos(60)Sin(10) + Sin(10)Using Cos(60) = 1/2 in above expression we get:

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:[tex]Sin(60)Cos(10) - Cos(60)Sin(10) -{Sin(60)Cos(10) + Cos(60)Sin(10)} + Sin(10)On simplifying we get:-2*Cos(60)Sin(10) + Sin(10)Using Cos(60) = 1/2 in above expression we get:-2*(1/2)*Sin(10) + Sin(10)

We will use these two trignometric formulas to solve this.1) Sin(A+B) = Sin(A)Cos(B)+Cos(A)Sin(B)2) Sin(A-B) = Sin(A)Cos(B)-Cos(A)Sin(B)Now we write our expression as Sin(60-10) - Sin(60+10) +Sin(10).[tex]On applying the above formulas we get:[tex]Sin(60)Cos(10) - Cos(60)Sin(10) -{Sin(60)Cos(10) + Cos(60)Sin(10)} + Sin(10)On simplifying we get:-2*Cos(60)Sin(10) + Sin(10)Using Cos(60) = 1/2 in above expression we get:-2*(1/2)*Sin(10) + Sin(10)= 0

====================

Plz mark as brain list....


sauravnayak1: 10/10
vasantinikam2004: mark as brainlist...
sauravnayak1: ok
vasantinikam2004: Thanks for following me
sauravnayak1: ok
sauravnayak1: I am following you
Similar questions