Math, asked by poudelprabesh6, 4 months ago

sinπ/5sin2π/5sin3π/5sin4π/5=5/16 please prove stepby step​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \sin({ \frac{\pi}{5} } ) \sin(\frac{2\pi}{5})  \sin( \frac{3\pi}{5} )  \sin( \frac{4\pi}{5} )  \\

 =  \sin( \frac{\pi}{5} ) \sin( \frac{2\pi}{5} ) \sin( \pi - \frac{2\pi}{5} ) \sin(\pi -  \frac{\pi}{5} )  \\

 = \sin^{2} ( \frac{\pi}{5} ). \sin ^{2} ( \frac{2\pi}{5} )  \\

 =  \{  \sin( \frac{\pi}{5} ) \sin( \frac{2\pi}{5} ) \}^{2}  \\

 =  \frac{1}{4} .  \{ 2\sin( \frac{\pi}{5} ) \sin( \frac{2\pi}{5} )  \} ^{2}  \\

 =  \frac{1}{4} . \{ \cos( \frac{\pi}{5} ) -  \cos( \frac{3\pi}{5} )   \} ^{2}  \\

 =  \frac{1}{4} . \{ \cos( \frac{\pi}{5} ) -   \cos( \frac{2\pi}{5} )   \} ^{2}  \\

 =  \frac{1}{4} . \{  \frac{ \sqrt{5}   +   1}{4} -  \frac{ 1 - \sqrt{5}   }{4}  \}^{2}  \\

 =  \frac{1}{4} . \{  \frac{ \sqrt{5}  }{2} \}^{2}  \\

 =  \frac{ 5}{16}  \\

Similar questions