Math, asked by shubhamjat47, 1 year ago

(sin 5x – 2 sin 3x + sin x)/(cos 5x - COS X) = tan x

Attachments:

Answers

Answered by Deepsbhargav
59
Using Formula: -

 = > cosC - cosD = 2sin( \frac{C + D}{2} ).sin( \frac{D - C}{2} ) \\ \\ \\ = > sinC + sinD = 2sin( \frac{C + D}{2} ).cos( \frac{C - D}{2} ) \\ \\ = > sin2x = 2sinx.cosx \\ \\ = > \frac{sinx}{cosx} = tanx \\ \\

______________________________________

NOW \\ \\ L.H.S. \\ \\ = > \frac{sin5x - 2sin3x + sinx}{cos5x - cosx } \\ \\ = > \frac{sin5x + sinx - 2sin3x}{cos5x - cosx} \\ \\ = > \frac{2sin3x.cos2x - 2sin3x}{2sin3x.sin( - 2x)} \\ \\ = > \frac{2sin3x(cos2x - 1)}{ - 2sin3x.sin2x} \\ \\ = > \frac{1 - cos2x}{sin2x} \\ \\ = > \frac{2 {sin}^{2}x }{2sinx.cosx} = \frac{sinx}{cosx} \\ \\ = > tanx \: \: \: \: \: \: \: [ANSWER]

_-_-_-_-_-_BE \: \: BRAINLY_-_-_-_-_-_

Anonymous: Great answer :)
S4MAEL: bole toh ek dm perfect ||
Anonymous: Wah...☺ #Intelligent #Innocent(in drms).....xD
SillySam: As always no words left to praise you bhaisa :)
Answered by MoonGurl01
85
Hey!! ☺

Here is your answer

_______________________

 \frac{sin \: 5x - 2 \: sin \: 3x \: + \: sin \: x}{cos \: 5x \: - \: cos \: x} = \: tan \: x

Taking L.H.S

 \frac{sin \: 5x + \: sin \: x \: - 2 \: sin \: 3x}{cos \: 5x \: - \: cos \: x}

 \frac{(sin \: 5x + \: sin \: x )\: - 2 \: sin \: 3x}{cos \: 5x \: - \: cos \: x}

_______

Solving Numerator and Denominator Separately

_______

Sin 5x + Sin x

using \: sin \: x \: + \: sin \: y \: = \: 2 \: sin \: \frac{x + y}{2} cos \: \frac{x - y}{2}

Putting x = 5x and y = x

2sin \: (\frac{5x \: + x}{2} ) \: cos \: ( \frac{5x - x}{2} )

2sin \: (\frac{6x}{2} ) \: cos \: ( \frac{4x}{2} )

2sin \: 3x \: cos \: 2x

________

Cos 5x - Cos x

using \: cos \: x \: - \: cos \: y \: = \: - 2 \: sin \: \frac{x + y}{2} sin \: \frac{x - y}{2}

Putting x = 5x and y = x

 - 2sin \: (\frac{5x \: + x}{2} ) \: sin \: ( \frac{5x - x}{2} )

 - 2sin \: (\frac{6x}{2} ) \: sin \: ( \frac{4x}{2} )

 - 2sin \: 3x\: sin \: 2x

_______

Taking R.H.S

 \frac{sin \: 5x + \: sin \: x \: - 2 \: sin \: 3x}{cos \: 5x \: - \: cos \: x}

Putting Values

 = \frac{2 \: \: sin \: 3x \: cos \: 2x \: - 2sin \: 3x}{ - 2sin \: 3x \: sin \: 2x}

 = \frac{2 \: \: sin \: 3x \: (cos \: 2x \: - 1)}{ - 2sin \: 3x \: sin \: 2x}

 = \frac{ (cos \: 2x \: - 1)}{ - sin \: 2x \:}

 = \frac{ - (cos \: 2x \: - 1)}{ sin \: 2x \:}

 = \frac{ 1 - cos \: 2x}{ sin \: 2x \:}

using \: cos \: 2x \: = 1 - {2 \: sin}^{2} x \\ and \: sin \: 2x = 2cos \: x \: sin \: x

 = \frac{1 - (1 - 2 {sin}^{2}x) }{2 \: cos \: x \: sin \: x}

 = \frac{0 + 2 {sin}^{2}x}{2 \: cos \: x \: sin \: x}

 = \frac{2 {sin}^{2}x}{2 \: cos \: x \: sin \: x}

 = \frac{sin \: x}{cos \: x}

 = tan \: x

= R.H.S

Hence, L.H.S = R.H.S

Hence Proved

_______________________

Thanks!! ✌

MoonGurl01: Thnks a lot ☺
AliaaBhatt: Great answer di :)
MoonGurl01: Thq Cutiee ..❤
SillySam: Bole to jhakas answer... Kehne ko mere kuchh bhi palle nhi padha xD hehe.. Explanation is nice :p ❤
MoonGurl01: Hehehe.. xD ☺ Btw Thanka Mah Lulu... xD ❤
pkparmeetkaur: Excellent answer Cutie❤
pkparmeetkaur: U rock!
MoonGurl01: Thanka ❤
S4MAEL: amazing
MoonGurl01: Shukriya Janab ♥
Similar questions