sin 5x cos 2x + cos 6x sin 3x = sin 8x cosx
prove it..
Answers
Answered by
15
Given: sin 5x cos 2x + cos 6x sin 3x = sin 8x cosx
To find: Prove the above expression.
Solution:
- Now we have given the term sin 5x cos 2x + cos 6x sin 3x
- Multiplying and dividing it by 2, we get:
1/2 (2 sin 5x cos 2x + 2 cos 6x sin 3x)
- Now we know the formula :
2 sinx cosy = sin(x + y) + sin(x - y)
- So applying this, we get:
1/2(sin(5x+2x) + sin(5x-2x) + sin(6x+3x) + sin(3x-6x))
- Simplifying this, we get:
1/2(sin 7x + sin 3x + sin 9x + sin(-3x))
1/2(sin 7x + sin 3x + sin 9x - sin 3x)
1/2(sin 7x + sin 9x)
- Now we know the formula:
sinx + siny = 2 sin x+y/2 cos x-y/2
- So applying this, we get:
1/2(2 sin 9x + 7x / 2 cos 9x - 7x / 2)
sin 16x/2 cos 2x/2
sin 8x cos x
- Hence proved.
Answer:
So in solution part we proved that sin 5x cos 2x + cos 6x sin 3x = sin 8x cosx
Similar questions