sin^6 10°+cos^6 10°+3 sin²10° cos²10° is
Answers
Answered by
0
Step-by-step explanation:
sin6θ+cos6θ+3sin2θcos2θ
⇒LHS=(sin2θ)3+(cos2θ)3+3sin2θcos2θ
Using, [a3+b3=(a+b)3−3ab(a+b)]
⇒LHS=(sin2θ+cos2θ)3−3sin2θcos2θ(sin2θ+cos2θ)3+3sin2θcos2θ
⇒LHS=1−3sin2θcos2θ+3sin2θcos2θ=1=RHS
Answered by
0
Answer:
sin
6
θ+cos
6
θ+3sin
2
θcos
2
θ
⇒LHS=(sin
2
θ)
3
+(cos
2
θ)
3
+3sin
2
θcos
2
θ
Using, [a
3
+b
3
=(a+b)
3
−3ab(a+b)]
⇒LHS=(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)
3
+3sin
2
θcos
2
θ
⇒LHS=1−3sin
2
θcos
2
θ+3sin
2
θcos
2
θ=1=RHS
Similar questions