sin 6 A + cos 6 A + 3 sin square A + cos square is equals to 1
Answers
Answered by
0
Answer:We can also write question as :
Step-by-step explanation:
Solving LHS ,
°•° sin^6 A + cos^6 A.
= ( sin²A )³ + ( cos²A)³ .
[ Using Identity :- ( a³ + b³ ) = ( a + b )( a² + b² - ab ) . ]
= ( sin²A + cos²A )( sin⁴A + cos⁴A - sin²Acos²A ) .
= ( 1 )( sin⁴A + cos⁴A - sin²Acos²A + 2sin²Acos²A - 2sin²Acos²A ) .
[ °•° sin²A + cos²A = 1 ] .
= [ ( sin⁴A + cos⁴A + 2sin²Acos²A ) - 3sin²Acos²A ] .
= ( sin²A + cos²A )² - 3sin²Acos²A .
= 1² - 3sin²Acos²A .
= 1 - 3sin²Acos²A .
•°• LHS = RHS .
Hence, it is proved.
Similar questions