sin^6+cos^6=1-3sin^2cos^2
Answers
Answered by
2
LHS = sin^6A + cos^6 A
= ( sin²A )³ + ( cos² A )³
*************************************
We know the algebraic identity :
x³ + y³ + 3xy( x + y ) = ( x + y )³
Or
x³ + y³ = ( x + y )³ - 3xy(x+y)
*************************************
Here , x = sin²A , y = cos²A
=(sin²A+cos²A)³-3sinAcosA(sin²A+cos²A)
= 1 - 3sinAcosA
[ Since , sin²A + cos²A = 1 ]
= RHS
••••••
= ( sin²A )³ + ( cos² A )³
*************************************
We know the algebraic identity :
x³ + y³ + 3xy( x + y ) = ( x + y )³
Or
x³ + y³ = ( x + y )³ - 3xy(x+y)
*************************************
Here , x = sin²A , y = cos²A
=(sin²A+cos²A)³-3sinAcosA(sin²A+cos²A)
= 1 - 3sinAcosA
[ Since , sin²A + cos²A = 1 ]
= RHS
••••••
Answered by
3
Solution :
Now, LHS = sin⁶θ + cos⁶θ
= (sin²θ)³ + (cos²θ)³
= (sin²θ + cos²θ) {(sin²θ)² + (cos²θ)² - sin²θ cos²θ}
= 1 * {(sin²θ + cos²θ)² - 2sin²θ cos²θ - sin²θ cos²θ}
= 1 - 3 sin²θ cos²θ
= RHS (Proved)
Similar questions