sin 6.sin 42.sin66.sin 78=1/16
Answers
Answered by
24
We use the trigonometric rules : 2 Sin A Sin B = Cos (A-B) - Cos (A+B) 2 Cos A Cos B = Cos (A-B) + Cos (A+B)
Sin 42° Sin 78° = 1/2 * [ Cos (42° - 78°) - Cos (78° + 42°) ] = 1/2 * [ Cos 36° - Cos 120°] = 1/2 [ Cos 36° + 1/2 ]Sin 6° Sin 66° = 1/2 * [ Cos (6-66) - Cos (6+66) ] = 1/2 [ Cos 60° - Cos 72° ] = 1/2 [ 1/2 - Cos 72° ]
Hence, Sin 6° Sin 66° Sin 42° Sin 78° = 1/16 [ 2 Cos 36° + 1 ] [ 1 - 2 Cos 72° ] = 1/16 [ 2 Cos 36° - 2 cos 72° + 1 - 4 Cos 36° Cos 72° ] = 1/16 + 1/8 [ Cos 36° - Cos 72° - 2 Cos 36° Cos 72° ] = 1/16 + 1/8 [ Cos 36° - Cos 72° - ( Cos (36+72) + Cos (72-36) ) ] = 1/16 - 1/8 [ Cos 72° + Cos 108° ] = 1/16 - 1/8 [ Cos 72° - Cos (180° - 108°) ] = 1/16 - 1/8 [ Cos 72° - Cos 72° ] = 1/16
Sin 42° Sin 78° = 1/2 * [ Cos (42° - 78°) - Cos (78° + 42°) ] = 1/2 * [ Cos 36° - Cos 120°] = 1/2 [ Cos 36° + 1/2 ]Sin 6° Sin 66° = 1/2 * [ Cos (6-66) - Cos (6+66) ] = 1/2 [ Cos 60° - Cos 72° ] = 1/2 [ 1/2 - Cos 72° ]
Hence, Sin 6° Sin 66° Sin 42° Sin 78° = 1/16 [ 2 Cos 36° + 1 ] [ 1 - 2 Cos 72° ] = 1/16 [ 2 Cos 36° - 2 cos 72° + 1 - 4 Cos 36° Cos 72° ] = 1/16 + 1/8 [ Cos 36° - Cos 72° - 2 Cos 36° Cos 72° ] = 1/16 + 1/8 [ Cos 36° - Cos 72° - ( Cos (36+72) + Cos (72-36) ) ] = 1/16 - 1/8 [ Cos 72° + Cos 108° ] = 1/16 - 1/8 [ Cos 72° - Cos (180° - 108°) ] = 1/16 - 1/8 [ Cos 72° - Cos 72° ] = 1/16
Answered by
5
ANSWER
1/16
Step-by-step explanation:
(sin6sin66)(sin42sin72) sinAsinB=1/2[cos(A-B)-cos(A+B)
1/2[cos(6-66)-cos(6+66)]1/2[cos(42-78)-cos(42+78)]
1/4(cos60-cos72)(cos36-cos120)
1/4[1/2-cos72][cos36-(-1/2)]
1/4(1/2-cos72)(cos36+1/2)
1/4(1-2cos72/2)(2cos36+1/2)
1/16(2cos36+1-2cos72cos36-2cos72)
1/16[1+2cos36-2cos72-2cos(72+36)+cos(72-36)]
1/16(1+2cos36-2cos72-2cos36-2cos108)
1/16[1-2cos72-2cos(180-72)]
1/16(1-2cos72+2cos72)
1/16*1
1/16
Similar questions