Math, asked by harshithabaskar85, 5 hours ago

sin(π/6+theta)=0.51 find theta ​

Answers

Answered by Manmohan04
1

Given,

\[\sin \left( {\frac{\pi }{6} + \theta } \right) = 0.51\]

Solution,

Calculate the value of \[\theta \]

\[\sin \left( {\frac{\pi }{6} + \theta } \right) = 0.51\]

\[ \Rightarrow \left( {\frac{\pi }{6} + \theta } \right) = {\sin ^{ - 1}}0.51\]

\[ \Rightarrow \theta  = {\sin ^{ - 1}}0.51 - \frac{\pi }{6}\]

Hence the value of \[\theta \] is \[{\sin ^{ - 1}}\left( {0.51} \right) - \frac{\pi }{6}\]

Answered by isha00333
1

Given: \[\sin \left( {\frac{\pi }{6} + \theta } \right) = 0.51\].

To find: the value of \theta.

Solution:

Simplify the given equation.

\[\sin \left( {\frac{\pi }{6} + \theta } \right) = 0.51\]

Multiply by \[{\sin ^{ - 1}}\]on both sides.

\[ \Rightarrow {\sin ^{ - 1}}\sin \left( {\frac{\pi }{6} + \theta } \right) = {\sin ^{ - 1}}0.51\]

\[\left[ {{{\sin }^{ - 1}}\sin \theta  = \theta } \right]\]

\[ \Rightarrow \left( {\frac{\pi }{6} + \theta } \right) = {\sin ^{ - 1}}0.51\]

\[ \Rightarrow \theta  = {\sin ^{ - 1}}0.51 - \frac{\pi }{6}\]

Hence, the value of \theta is \[{\sin ^{ - 1}}0.51 - \frac{\pi }{6}\].

Similar questions