Math, asked by abhinavaru59gmailcom, 16 days ago

sin (60 - A) cos (30 + A) + cos (60 - A) sin (30 + A) = 1​

Answers

Answered by anindyaadhikari13
2

Solution:

We have to prove that:

→ sin(60° - A) cos(30° + A) + cos(60° - A) sin(30° + A) = 1

Taking Left Hand Side, we get:

= sin(60° - A) cos(30° + A) + cos(60° - A) sin(30° + A)

Can be written as:

= sin(90° - (30° + A)) cos (30° + A) + cos(90° - (30° + A)) sin(30° + A)

We know that:

→ sin(90° - x) = cos(x)

→ cos(90° - x) = sin(x)

Therefore, LHS becomes:

= cos(30° + A) cos(30° + A) + sin(30° + A) sin(30° + A)

= cos²(30° + A) + sin²(30° + A)

We know that:

→ sin²(x) + cos²(x) = 1

Therefore, LHS becomes:

= 1

Therefore:

→ sin(60° - A) cos(30° + A) + cos(60° - A) sin(30° + A) = 1

Hence Proved..!!

Additional Information:

1. Relationship between sides and T-Ratios.

  • sin θ = Height/Hypotenuse
  • cos θ = Base/Hypotenuse
  • tan θ = Height/Base
  • cot θ = Base/Height
  • sec θ = Hypotenuse/Base
  • cosec θ = Hypotenuse/Height

2. Square formulae.

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1

3. Reciprocal Relationship.

  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • tan θ = 1/cot θ

4. Cofunction identities.

  • sin(90° - θ) = cos θ
  • cos(90° - θ) = sin θ
  • cosec(90° - θ) = sec θ
  • sec(90° - θ) = cosec θ
  • tan(90° - θ) = cot θ
  • cot(90° - θ) = tan θ

5. Even odd identities.

  • sin -θ = -sin θ
  • cos -θ = cos θ
  • tan -θ = -tan θ
Similar questions