sin (60 - A) cos (30 + A) + cos (60 - A) sin (30 + A) = 1
Answers
Answered by
2
Solution:
We have to prove that:
→ sin(60° - A) cos(30° + A) + cos(60° - A) sin(30° + A) = 1
Taking Left Hand Side, we get:
= sin(60° - A) cos(30° + A) + cos(60° - A) sin(30° + A)
Can be written as:
= sin(90° - (30° + A)) cos (30° + A) + cos(90° - (30° + A)) sin(30° + A)
We know that:
→ sin(90° - x) = cos(x)
→ cos(90° - x) = sin(x)
Therefore, LHS becomes:
= cos(30° + A) cos(30° + A) + sin(30° + A) sin(30° + A)
= cos²(30° + A) + sin²(30° + A)
We know that:
→ sin²(x) + cos²(x) = 1
Therefore, LHS becomes:
= 1
Therefore:
→ sin(60° - A) cos(30° + A) + cos(60° - A) sin(30° + A) = 1
Hence Proved..!!
Additional Information:
1. Relationship between sides and T-Ratios.
- sin θ = Height/Hypotenuse
- cos θ = Base/Hypotenuse
- tan θ = Height/Base
- cot θ = Base/Height
- sec θ = Hypotenuse/Base
- cosec θ = Hypotenuse/Height
2. Square formulae.
- sin²θ + cos²θ = 1
- cosec²θ - cot²θ = 1
- sec²θ - tan²θ = 1
3. Reciprocal Relationship.
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- tan θ = 1/cot θ
4. Cofunction identities.
- sin(90° - θ) = cos θ
- cos(90° - θ) = sin θ
- cosec(90° - θ) = sec θ
- sec(90° - θ) = cosec θ
- tan(90° - θ) = cot θ
- cot(90° - θ) = tan θ
5. Even odd identities.
- sin -θ = -sin θ
- cos -θ = cos θ
- tan -θ = -tan θ
Similar questions