Math, asked by chicku10, 1 year ago

sin 60 ×cos ×30+sin30× cos60

Answers

Answered by mayuriK
20
your answer is = 1.☺☺
Attachments:
Answered by XxMrZombiexX
156

 \blue{\huge\sf\underbrace{\underline{\underline{Given}} :   -  - }}

  • Sin 60° × cos 30° + sin 30° × cos60°

  \blue {\huge\sf \overbrace{\underbrace{\underline{\underline{to \: find}} :   -  - }}}

  • Sin 60° × cos 30° + sin 30° × cos60° =??

  \blue {\huge\sf \overbrace{\underbrace{\underline{\underline{formulas}} :   -  - }}}

  •  \pmb {\: Sin 60°  =  \frac{ \sqrt{3} }{2} } \\
  •  \pmb{ cos 30° =  \frac{ \sqrt{3} }{2}  } \\
  •  \pmb{ sin 30° =  \frac{1}{2}  } \\
  •  \pmb{cos60° =  \frac{1}{2} } \\

  \green {\huge\sf \overbrace{\underbrace{\underline{\underline{solution}} :   -  - }}}

We know that,

 \sf\longmapsto Sin 60°   =  \frac{{ \sqrt{3} } }{2} \\  \\  \sf\longmapsto \: cos 30° =  \frac{ \sqrt{3} }{2}   \\  \\\sf\longmapsto  sin 30° =  \frac{ {1} }{2}   \\  \\\sf\longmapsto  cos60° =  \frac{1}{2}

Now we put value in our question

 \rm Sin 60° × cos 30° + sin 30° × cos60° \\  \\  \\ \longmapsto \rm \bigg\lgroup \frac{ \sqrt{3} }{2} \bigg\rgroup \times  \bigg\lgroup \frac{ \sqrt{3} }{2} \bigg\rgroup  +  \bigg\lgroup  \frac{1}{2} \bigg\rgroup  \times \bigg\lgroup  \frac{1}{2} \bigg\rgroup

Now we open the bracket

\rm\longmapsto   \frac{ \sqrt{3} \times  \sqrt{3}  }{2 \times 2}   +  \frac{1 \times 1}{2 \times 2}  \\  \\

Root are canceled

\rm\longmapsto  \dfrac{  \cancel{\sqrt{3}} \times  \cancel{\sqrt{3}} }{2 \times 2}  +  \dfrac{1 \times 1}{2 \times 2}

Denominator are multiple

\longmapsto\rm   \dfrac{3}{4}  +  \dfrac{1}{4}  \\  \\ \longmapsto\rm  \dfrac{3 + 1}{4}  \\  \\ \longmapsto\rm  \dfrac{4}{4}

4 and 4 are canceled

\longmapsto\rm   \cancel\dfrac{4}{4}

 \large \longmapsto\rm \red1

Hence, the Sin 60° × cos 30° + sin 30° × cos60° = 1

_________________________

More information

 \blue{\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\bf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}

Similar questions