Math, asked by vikassahu2005591, 6 months ago

sin 60 +cos 60 / sin60- cos 60. plis solve​

Answers

Answered by rajbhowmickslg
5

Answer:

1/2+√3/2÷1/2-√3/2 =1+√3/2×2/√3-1 =-(√3+1)/(√3-1)

Answered by pulakmath007
6

SOLUTION

TO EVALUATE

\displaystyle \sf{   \frac{ \sin  {60}^{ \circ}  +  \cos {60}^{ \circ}}{\sin  {60}^{ \circ}   -   \cos {60}^{ \circ}}   }

EVALUATION

Here the given expression is

\displaystyle \sf{   \frac{ \sin  {60}^{ \circ}  +  \cos {60}^{ \circ}}{\sin  {60}^{ \circ}   -   \cos {60}^{ \circ}}   }

We simplify it as below

\displaystyle \sf{   \frac{ \sin  {60}^{ \circ}  +  \cos {60}^{ \circ}}{\sin  {60}^{ \circ}   -   \cos {60}^{ \circ}}   }

\displaystyle \sf{   =  \frac{  \dfrac{ \sqrt{3} }{2}   +   \dfrac{1}{2} }{\dfrac{ \sqrt{3} }{2}   -    \dfrac{1}{2}}   }

\displaystyle \sf{   =  \frac{  \dfrac{ \sqrt{3} + 1 }{2} }{\dfrac{ \sqrt{3} - 1 }{2} }   }

\displaystyle \sf{   =   \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }  }

\displaystyle \sf{   =   \frac{ (\sqrt{3}  + 1)(\sqrt{3}  + 1)}{ (\sqrt{3}  + 1)(\sqrt{3}   -  1) }  }

\displaystyle \sf{   =   \frac{ {(\sqrt{3}  + 1)}^{2} }{  {( \sqrt{3} )}^{2}  -  {(1)}^{2} }  }

\displaystyle \sf{   =   \frac{ 3 + 1 + 2 \sqrt{3} }{ 3 - 1}  }

\displaystyle \sf{   =   \frac{ 4+ 2 \sqrt{3} }{ 2}  }

\displaystyle \sf{   =   \frac{ 2(2+  \sqrt{3} )}{ 2}  }

\displaystyle \sf{   = 2+  \sqrt{3} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions