Math, asked by SRAcharya, 1 year ago

sin 60 + theta minus sin 60 - theta is equal to sin theta

Answers

Answered by BrainlyGayathri
2

Question:-

Prove:-

 \sin(60 \degree+ \theta )  - \sin(60 \degree -  \theta) =  \sin \theta

Required Formulae:-

 \sin(a  + b)  =  \sin(a)  \cos(b)  +  \cos(a)  \sin(b)

 \sin(a - b)  =  \sin(a)  \cos(b)  -  \cos(a)  \sin(b)

Solution:-

To prove:-

 \sin(60 \degree+ \theta )  - \sin(60 \degree -  \theta) =  \sin \theta

By applying formula,

 \sin(60 +  \theta)  =  \sin60  cos \theta +  \cos60 \sin \theta

 =  >  \frac{ \sqrt{3} }{2}  \cos \theta +  \frac{1}{2}  \sin \theta

 =  >  \frac{ \sqrt{3} \cos \theta +  \sin \theta}{2}

 \sin(60 -   \theta)  =  \sin60 \cos \theta -  \cos60 \sin \theta

 =  >  \frac{ \sqrt{3} }{2} \cos \theta -   \frac{1}{2}  \sin \theta

 =  >  \frac{ \sqrt{3} \cos \theta  -  \sin \theta}{2}

 \sin(60 +  \theta)  -  \sin(60 -  \theta)

 \frac{ \sqrt{3} \cos \theta +  \sin  \theta}{2}  -  \frac{ \sqrt{3} \cos \theta -  \sin \theta   }{2}

 \frac{ \sqrt{3}  \cos \theta +   \sin \theta -   \sqrt{3} \cos \theta +  \sin \theta  }{2}

 \frac{2 \sin \theta}{2}

 \sin \theta

Answered by Hansika4871
1

Given:

A trigonometric equation Sin(60 + θ) - Sin( 60 - θ) = Sinθ.

To Find:

The proof of the given trigonometric equation.

Solution:

The given problem can be solved using the concepts of trigonometry.

1. The given trigonometric equation is Sin(60 + θ) - Sin( 60 - θ) = Sinθ.

2. According to the properties of trigonometry,

  • Sin(A+B) = SinACosB + CosASinB,
  • Sin(A-B) = SinACosB - CosASinB.

3. Consider the LHS of the equation and use the formulae mentioned above to expand the given trigonometric equation,

=> ( Sin60Cosθ + Cos60Sinθ) - ( Sin60Cosθ - Cos60Sinθ),

=> √(3/2)Cosθ + (1/2)Sinθ - √(3/2)Cosθ + (1/2)Sinθ,

=> 0 + (1/2)Sinθ + (1/2)Sinθ,

=> Sinθ = RHS.

Hence Proved.

Therefore, the given equation is proved.

Similar questions