sin(60°+A)-cos(30°-A) equal to
Answers
Answered by
58
ANSWER :-
0
GIVEN TO FIND THE VALUE OF :-
- sin(60°+A) - cos(30°-A)
SOLUTION :-
》 Expanding them by using formulae
- sin(A+B) = sinA cosB + sinB cosA
- cos(A-B) = cosA cosB + sinA sinB
= sin60° cosA + sinA cos60° - [ cos30° cosA + sin30° sinA]
》 As we know from Trigonometric table ,
- sin60° = ½
- cos30° = ½
= 1/2 cosA + sinA 1/2 -[ 1/2 cosA + 1/2 sinA]
= cosA/2 + sinA /2 -[ cosA/2 + sinA/2]
》 Opening the brackets
= cosA/2 + sinA/2 - cosA/2 - sinA/2
》 Keeping like terms together
= cosA/2 - cosA/2 + sinA/2 - sinA/2
》 All terms cancel each other
= 0
So, the value of sin(60°+A) - cos(30°-A) is 0
KNOW MORE :-
sin(A+B)= sinAcosB + sinBcosA
sin(A-B) = sinAcosB- sinBcosA
cos(A+B) = cosAcosB - sinAsinB
cos(A-B) = cosAcosB + sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotB cotA -1)/(cotB + cotA)
cot(A-B) =( cotB cotA + 1)/(cotB-cotA)
Similar questions