Math, asked by jehi, 6 months ago

sin 60°/cos^2 45° - 3 tan 30° +5cos 90°​

Answers

Answered by preetam21122044
6

Answer:

0

Step-by-step explanation:

sin 60°/cos²45°-3tan30°+5cos90°

√3/2*2/1-√3+0

=0

Hope this will help you

Please give me mine reward for helping you

Answered by Anonymous
8

\huge \boxed {ANSWER}

\sf \large\frac{ \sin(60) }{ { \cos(45) }^{2} - 3 \tan(30)  + 5 \cos(90)  }

 =  > \sf \large\frac{ \frac{ \sqrt{3} }{2} }{ { (\frac{1}{ \sqrt{2} } )}^{2} - 3( \frac{1}{ \sqrt{3} } ) + 5 \times 0 }

 =  > \sf\large \frac{ \frac{ \sqrt{3} }{2} }{ \frac{1}{2} -  \sqrt{3}  + 0  }

 =  >\sf \large \frac{ \frac{ \sqrt{3} }{2} }{ \frac{1 -  \sqrt{3} }{2} }

 =  >\sf\large  \frac{ \sqrt{3} }{2}  \times  \frac{2}{1 -  \sqrt{3} }

 =  > \sf \large\frac{ \sqrt{3} }{1 -  \sqrt{3} }

\large\mathsf{Upon\: rationalizing\: we\: get,}

  \frac{ \sqrt{3} }{1 -  \sqrt{3} }  \times  \frac{1 +  \sqrt{3} }{1 +  \sqrt{3} } \\  \\   =  >  \frac{ \sqrt{3} (1 +  \sqrt{3} )}{ {1}^{2}  -  { \sqrt{3} }^{2} } =    -  \frac{ \sqrt{3} (1 +  \sqrt{3} )}{2}

Similar questions