Math, asked by punishbhao, 1 year ago

sin 60degree cos45 degree +cos 60 degree sin45degree =root 3+1divide by 2 root 2 hence proved

Answers

Answered by creamiepie
1
heya friend ✋✋

here's your answer (︶^︶)

___________________________________
 \sin(60) \times \cos(45) + \cos(60 ) \times \sin(45) = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2} \times \frac{1}{ \sqrt{2} } + \frac{1}{2} \times \frac{1}{ \sqrt{2} } = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2 \sqrt{2} } + \frac{1}{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }

hence,proved

___________________________________

^_^hope it helps u ^_^

punishbhao: yaa
punishbhao: its help me
punishbhao: arre isme brainliest ka option ni aar a
punishbhao: or aapne second step me ek step kr di he
punishbhao: ha ab shi diya
Answered by muneejaslam786
0

Answer:

\sin(60) \times \cos(45) + \cos(60 ) \times \sin(45) = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2} \times \frac{1}{ \sqrt{2} } + \frac{1}{2} \times \frac{1}{ \sqrt{2} } = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2 \sqrt{2} } + \frac{1}{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }  

Step-by-step explanation:

\sin(60) \times \cos(45) + \cos(60 ) \times \sin(45) = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2} \times \frac{1}{ \sqrt{2} } + \frac{1}{2} \times \frac{1}{ \sqrt{2} } = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2 \sqrt{2} } + \frac{1}{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }  

Similar questions