sin 60degree cos45 degree +cos 60 degree sin45degree =root 3+1divide by 2 root 2 hence proved
Answers
here's your answer (︶^︶)
___________________________________
hence,proved
___________________________________
^_^hope it helps u ^_^
Answer:
\sin(60) \times \cos(45) + \cos(60 ) \times \sin(45) = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2} \times \frac{1}{ \sqrt{2} } + \frac{1}{2} \times \frac{1}{ \sqrt{2} } = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2 \sqrt{2} } + \frac{1}{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }
Step-by-step explanation:
\sin(60) \times \cos(45) + \cos(60 ) \times \sin(45) = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2} \times \frac{1}{ \sqrt{2} } + \frac{1}{2} \times \frac{1}{ \sqrt{2} } = \frac{ \sqrt{3} + 1}{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} }{2 \sqrt{2} } + \frac{1}{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } \\ = > \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } = \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }