Sin (-660) Tan (1050) Sec(-420)/
Cos (225) cosec (315) cos(510)
Answers
Step-by-step explanation:
Let us assume that the solution is S. Then,
S=sin(−660)tan(1050)sec(−420)(cos225)(cosec315)(cos510)S=sin(−660)tan(1050)sec(−420)(cos225)(cosec315)(cos510)
We make the following changes:
sec x=1/cosx
Sec(-420) = [(1/cos(-420)]
cosec x =1 / sin x
Cosec(315) = [(1/sin(315)]
Thus, S=sin(−660)tan(1050)sin(315)cos(225)cos(−420)cos(510)S=sin(−660)tan(1050)sin(315)cos(225)cos(−420)cos(510)
Now,
sin (-x) = - sin x
sin (-660) = - sin 660
Cos (-x) = cos x
Cos (-420) = cos 420
Thus, S=−sin(660)tan(1050)sin(315)cos(225)cos(420)cos(510)S=−sin(660)tan(1050)sin(315)cos(225)cos(420)cos(510)
We further use the identities:
Sin (2π + x ) = sin x
Sin (660) = sin ( 360 + 300) = sin ( 2π + 300) = sin (300)
Sin ( π + x) = - sin x
Sin (300) = sin ( 180 + 120) = sin (π +120) = -(-sin 120 )
Sin (120) = sin ( 180 - 60) = sin 60
- sin(660) = sin (60)
Similarly, Sin (315) = - sin (45)
tan x = sin x / cos x
tan (1050) = sin (1050)/ cos (1050) = sin (2*2π + 330)/cos (2*2π + 330) = sin (330)/cos(330)
Sin ( 330) = sin ( 180 + 150) = sin (π +150) = (-sin 150 )
Sin (150) = sin ( 180 - 30) = - sin 30
Cos( 330) = cos( 180 + 150) = cos(π +150) = (-cos150 )
Cos (150) = cos( 180 - 30) =-(-cos 30) = cos 30
Tan (1050) = tan (30)
Cos(2π + x ) = cos x
Cos(420) =cos (360 +60) = cos (2π +60) =cos 60
Cos (420) =cos (60)
Cos (510) =cos (360 +150) = cos (2π +150) = cos 150
Cos(π-x) = -cos x
Cos ( 150) =cos (180 -30) = cos (π - 30) = - cos (30)
Cos (510) = - cos (30)
Cos ( π + x) = - cos x
Cos (225) = cos ( 180 + 45) = cos (π +45) = - cos (45)
Cos (225) = - cos 45
Thus, S=−sin(660)tan(1050)sin(315)cos(225)cos(420)cos(510)S=−sin(660)tan(1050)sin(315)cos(225)cos(420)cos(510)
All the values fall in quadrant 1. So all are positive.
S=sin(60)tan(30)sin(45)cos(45)cos(60)cos(30)S=sin(60)tan(30)sin(45)cos(45)cos(60)cos(30)
S=(√3/2)