Math, asked by namastehome1, 1 year ago

Sin^6A-cos^6A=(2sin^2A-1)(cos^2Asin^4A)

Answers

Answered by mysticd
6

Answer:

  \red { sin^{6}A - cos^{6}A}\green {= (2sin^{2}A-1)(sin^{4}A + cos^{2}A)}

Step-by-step explanation:

 LHS \red { = sin^{6}A - cos^{6}A}

= (sin^{2})^{3}A - (cos^{2})^{3}A

 = (sin^{2}A - cos^{2}A)[(sin^{2})^{2}+sin^{2}A cos^{2} A + (cos^{2}A)^{2}]

\boxed {\pink { x^{3}-y^{3} = (x-y)(x^{2}+xy+y^{2})}}

 = [sin^{2}A-(1-sin^{2}A)][sin^{4}A+sin^{2}A cos^{2} A + cos^{4} A]

= (sin^{2}A - 1+sin^{2}A) [sin^{4}A+cos^{2}A(sin^{2}A+cos^{2}A]

 \green {= (2sin^{2}A-1)(sin^{4}A + cos^{2}A)}

\boxed { \pink { sin^{2}A + cos^{2}A = 1}}

 = RHS

Therefore.,

  \red { sin^{6}A - cos^{6}A}\green {= (2sin^{2}A-1)(sin^{4}A + cos^{2}A)}

•••♪

Similar questions