Math, asked by mehekruhi2005, 9 months ago

sin^6theta+cos^6theta=1-3 sin^2 theta cos^2 theta​

Attachments:

Answers

Answered by RvChaudharY50
17

Qᴜᴇsᴛɪᴏɴ :-

Prove :- sin⁶θ + cos⁶θ = 1 - 3 sin²θ*cos²θ

Sᴏʟᴜᴛɪᴏɴ :-

Taking LHS ,

→ sin⁶θ + cos⁶θ

Now a⁶ can be written as (a²)³ ,

→ (sin²θ)³ + (cos²θ)³

Now, using a³ + b³ = (a + b)³ - 3ab(a + b)

→ (sin²θ + cos²θ)³ - 3 * sin²θ*cos²θ * (sin²θ + cos²θ)

Now using sin²A + cos²A = 1,

→ 1 - 3 * sin²θ*cos²θ * 1

1 - 3sin²θ*cos²θ = RHS (Proved).

Answered by Anonymous
46

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Take\:L.H.S:}}}}

: \implies{\sf{ ( {sin}^{6} \theta +  {cos}^{6}   \theta)}} \\ \\

 : \implies{\sf{  { \big [ \: (sin \theta}^{2} )^{3} + ( {cos}^{2}) ^{3}   \big] }} \\ \\

We know that,

 : \boxed{\sf{  \purple{ {x}^{3} +  {y}^{3} = (x + y)^{3}   - 3xy(x + y) }}} \\ \\

 : \implies{\sf{  \big[ ( {sin}^{2}  \theta +  {cos}^{2}  \theta )\big] ^{3} - 3 {sin}^{2}  \theta {cos}^{2} \theta( {sin}^{2}   \theta +  {cos}^{2}  \theta) }} \\ \\

 : \boxed{\sf{  \purple{  {sin}^{2} \theta +  {cos}^{2}  \theta = 1  }}} \\ \\

 : \implies{\sf{   ( 1) ^{3} - 3 {sin}^{2}  \theta {cos}^{2} \theta( 1) }} \\ \\

 : \implies{\sf{   1 - 3 {sin}^{2}  \theta {cos}^{2} \theta }} \\ \\

Hence L.HS=R.H.S

Similar questions