sin 6x + sin 6 Y + sin6Z=4sin3X sin3Y sin3 X if X+Y+Z=180°
Answers
Answered by
0
Answer:
Given, sin−16x+sin−163x=−2π⇒sin−16x=−2π−sin−163x⇒sin(sin−16x)=sin(−2π−sin−163x)⇒6x=cos(sin−163x)⇒6x=cos(cos−1(1−108x2))⇒6x=1−108x2⇒36x2=1−108x2⇒144x2=1⇒x=±121
For x=121
sin−16x+
Similar questions