sin 72°
sec 32°
cos 189
cosec 58°
Attachments:
Answers
Answered by
2
Step-by-step explanation:
Given Question:-
The value of (sin72°/cos 18°)-(sec 32°/cosec58°)
Solution:-
Given that:
(sin72°/cos18°)-(sec32°/cosec58°)
=>[sin(90°-18°)/cos18°]-[sec(90°-58°)/cosec58°]
We know that sin(90°-A)=cos A
Sec (90°-A)=Cosec A
=>(Cos 18°/Cos 18°)-(Cosec 58°/Cosec 58°)
=>1-1
=>0
(or)
(sin72°/cos18°)-(sec32°/cosec58°)
=>[sin72°/cos(90°-72°)]-[sec32°/Cosec(90°-32°)]
We know that
Cos (90°-A)=Sin A
Cosec (90°-A)=Sec A
=>(sin 72°/sin72°)-(Sec 32°/sec32°)
=>1-1
=>0
Answer:-
The value of the given problem =0
Used formulae:-
- Sin(90°-A)=Cos A
- Cos (90°-A)=Sin A
- Sec(90°-A)= Cosec A
- Cosec (90°-A)= Sec A
Similar questions